Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Integrating asthma hazard characterization methods for consumer products.

Authors: Maier, A; Vincent, M J; Gadagbui, B; Patterson, J; Beckett, W; Dalton, P; Kimber, I; Selgrade, M J K

Published In Regul Toxicol Pharmacol, (2014 Oct)

Abstract: Despite extensive study, definitive conclusions regarding the relationship between asthma and consumer products remain elusive. Uncertainties reflect the multi-faceted nature of asthma (i.e., contributions of immunologic and non-immunologic mechanisms). Many substances used in consumer products are associated with occupational asthma or asthma-like syndromes. However, risk assessment methods do not adequately predict the potential for consumer product exposures to trigger asthma and related syndromes under lower-level end-user conditions. A decision tree system is required to characterize asthma and respiratory-related hazards associated with consumer products. A system can be built to incorporate the best features of existing guidance, frameworks, and models using a weight-of-evidence (WoE) approach. With this goal in mind, we have evaluated chemical hazard characterization methods for asthma and asthma-like responses. Despite the wealth of information available, current hazard characterization methods do not definitively identify whether a particular ingredient will cause or exacerbate asthma, asthma-like responses, or sensitization of the respiratory tract at lower levels associated with consumer product use. Effective use of hierarchical lines of evidence relies on consideration of the relevance and potency of assays, organization of assays by mode of action, and better assay validation. It is anticipated that the analysis of existing methods will support the development of a refined WoE approach.

PubMed ID: 24937810 Exiting the NIEHS site

MeSH Terms: Animals; Asthma/etiology*; Asthma/immunology; Consumer Product Safety*; Decision Trees; Humans; Models, Theoretical; Occupational Exposure/adverse effects*; Risk Assessment/methods

to Top