Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Genotyping of Single Nucleotide Polymorphisms in DNA Isolated from Serum Using Sequenom MassARRAY Technology.

Authors: Clendenen, Tess V; Rendleman, Justin; Ge, Wenzhen; Koenig, Karen L; Wirgin, Isaac; Currie, Diane; Shore, Roy E; Kirchhoff, Tomas; Zeleniuch-Jacquotte, Anne

Published In PLoS One, (2015)

Abstract: Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA.We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs) using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women's Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison.We observed that 60 of the 81 SNPs (74%) had high call frequencies (≥95%) using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95%) had highly concordant (>98%) genotype calls across all three sample types. High purity was not a critical factor to successful genotyping.Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.

PubMed ID: 26274499 Exiting the NIEHS site

MeSH Terms: Adult; Aged; DNA/blood; DNA/genetics*; DNA/isolation & purification; Female; Genotyping Techniques/methods*; High-Throughput Nucleotide Sequencing/methods*; Humans; Middle Aged; Polymorphism, Single Nucleotide*; Prospective Studies

to Top