Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: An Empirical Comparison of Joint and Stratified Frameworks for Studying G × E Interactions: Systolic Blood Pressure and Smoking in the CHARGE Gene-Lifestyle Interactions Working Group.

Authors: Sung, Yun Ju; Winkler, Thomas W; Manning, Alisa K; Aschard, Hugues; Gudnason, Vilmundur; Harris, Tamara B; Smith, Albert V; Boerwinkle, Eric; Brown, Michael R; Morrison, Alanna C; Fornage, Myriam; Lin, Li-An; Richard, Melissa; Bartz, Traci M; Psaty, Bruce M; Hayward, Caroline; Polasek, Ozren; Marten, Jonathan; Rudan, Igor; Feitosa, Mary F; Kraja, Aldi T; Province, Michael A; Deng, Xuan; Fisher, Virginia A; Zhou, Yanhua; Bielak, Lawrence F; Smith, Jennifer; Huffman, Jennifer E; Padmanabhan, Sandosh; Smith, Blair H; Ding, Jingzhong; Liu, Yongmei; Lohman, Kurt; Bouchard, Claude; Rankinen, Tuomo; Rice, Treva K; Arnett, Donna; Schwander, Karen; Guo, Xiuqing; Palmas, Walter; Rotter, Jerome I; Alfred, Tamuno; Bottinger, Erwin P; Loos, Ruth J F; Amin, Najaf; Franco, Oscar H; van Duijn, Cornelia M; Vojinovic, Dina; Chasman, Daniel I; Ridker, Paul M; Rose, Lynda M; Kardia, Sharon; Zhu, Xiaofeng; Rice, Kenneth; Borecki, Ingrid B; Rao, Dabeeru C; Gauderman, W James; Cupples, L Adrienne

Published In Genet Epidemiol, (2016 07)

Abstract: Studying gene-environment (G × E) interactions is important, as they extend our knowledge of the genetic architecture of complex traits and may help to identify novel variants not detected via analysis of main effects alone. The main statistical framework for studying G × E interactions uses a single regression model that includes both the genetic main and G × E interaction effects (the "joint" framework). The alternative "stratified" framework combines results from genetic main-effect analyses carried out separately within the exposed and unexposed groups. Although there have been several investigations using theory and simulation, an empirical comparison of the two frameworks is lacking. Here, we compare the two frameworks using results from genome-wide association studies of systolic blood pressure for 3.2 million low frequency and 6.5 million common variants across 20 cohorts of European ancestry, comprising 79,731 individuals. Our cohorts have sample sizes ranging from 456 to 22,983 and include both family-based and population-based samples. In cohort-specific analyses, the two frameworks provided similar inference for population-based cohorts. The agreement was reduced for family-based cohorts. In meta-analyses, agreement between the two frameworks was less than that observed in cohort-specific analyses, despite the increased sample size. In meta-analyses, agreement depended on (1) the minor allele frequency, (2) inclusion of family-based cohorts in meta-analysis, and (3) filtering scheme. The stratified framework appears to approximate the joint framework well only for common variants in population-based cohorts. We conclude that the joint framework is the preferred approach and should be used to control false positives when dealing with low-frequency variants and/or family-based cohorts.

PubMed ID: 27230302 Exiting the NIEHS site

MeSH Terms: Blood Pressure/genetics*; Cohort Studies; Databases, Factual; Family; Gene Frequency; Gene-Environment Interaction*; Genome-Wide Association Study; Genotype; Humans; Phenotype; Smoking*

to Top