Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Role of heme in bromine-induced lung injury.

Authors: Lam, Adam; Vetal, Nilam; Matalon, Sadis; Aggarwal, Saurabh

Published In Ann N Y Acad Sci, (2016 06)

Abstract: Bromine (Br2 ) gas inhalation poses an environmental and occupational hazard resulting in high morbidity and mortality. In this review, we underline the acute lung pathology (within 24 h of exposure) and potential therapeutic interventions that may be utilized to mitigate Br2 -induced human toxicity. We discuss our latest published data, which suggest that an increase in heme-dependent tissue injury underlies the pathogenesis of Br2 toxicity. Our study was based on previous findings that demonstrated that Br2 upregulates the heme-degrading enzyme heme oxygenase-1 (HO-1), which converts toxic heme into bilverdin. Interestingly, following Br2 inhalation, heme levels were indeed elevated in bronchoalveolar lavage fluid, plasma, and whole lung tissue in C57BL/6 mice. High heme levels correlated with increased lung oxidative stress, lung inflammation, respiratory acidosis, lung edema, higher airway resistance, and mortality. However, therapeutic reduction of heme levels, by either scavenging with hemopexin or degradation by HO-1, improved lung function and survival. Therefore, heme attenuation may prove a useful adjuvant therapy to treat patients after Br2 exposure.

PubMed ID: 27244263 Exiting the NIEHS site

MeSH Terms: Animals; Bromine/toxicity*; Heme/pharmacology*; Humans; Inhalation Exposure/analysis; Lung Injury/chemically induced*; Lung Injury/pathology; Models, Biological; Public Health

to Top