Skip Navigation

Publication Detail

Title: Ambient Fine Particulate Matter, Outdoor Temperature, and Risk of Metabolic Syndrome.

Authors: Wallwork, Rachel S; Colicino, Elena; Zhong, Jia; Kloog, Itai; Coull, Brent A; Vokonas, Pantel; Schwartz, Joel D; Baccarelli, Andrea A

Published In Am J Epidemiol, (2017 Jan 01)

Abstract: Ambient air pollution and temperature have been linked with cardiovascular morbidity and mortality. Metabolic syndrome and its components-abdominal obesity, elevated fasting blood glucose concentration, low high-density lipoprotein cholesterol concentration, hypertension, and hypertriglyceridemia-predict cardiovascular disease, but the environmental causes are understudied. In this study, we prospectively examined the long-term associations of air pollution, defined as particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5), and temperature with the development of metabolic syndrome and its components. Using covariate-adjustment Cox proportional hazards models, we estimated associations of mean annual PM2.5 concentration and temperature with risk of incident metabolic dysfunctions between 1993 and 2011 in 587 elderly (mean = 70 (standard deviation, 7) years of age) male participants in the Normative Aging Study. A 1-μg/m3 increase in mean annual PM2.5 concentration was associated with a higher risk of developing metabolic syndrome (hazard ratio (HR) = 1.27, 95% confidence interval (CI): 1.06, 1.52), an elevated fasting blood glucose level (HR = 1.20, 95% CI: 1.03, 1.39), and hypertriglyceridemia (HR = 1.14, 95% CI: 1.00, 1.30). Our findings for metabolic syndrome and high fasting blood glucose remained significant for PM2.5 levels below the Environmental Protection Agency's health-safety limit (12 μg/m3). A 1°C increase in mean annual temperature was associated with a higher risk of developing elevated fasting blood glucose (HR = 1.33, 95% CI: 1.14, 1.56). Men living in neighborhoods with worse air quality-with higher PM2.5 levels and/or temperatures than average-showed increased risk of developing metabolic dysfunctions.

PubMed ID: 27927620 Exiting the NIEHS site

MeSH Terms: Aged; Air Pollution/adverse effects*; Air Pollution/analysis; Blood Glucose/analysis*; Environmental Exposure/adverse effects*; Environmental Exposure/analysis; Hot Temperature/adverse effects*; Humans; Longitudinal Studies; Male; Metabolic Syndrome/epidemiology; Metabolic Syndrome/etiology*; New England/epidemiology; Particulate Matter/adverse effects*; Particulate Matter/analysis; Proportional Hazards Models; Risk Assessment; Space-Time Clustering; Time; Veterans Health/statistics & numerical data

Back
to Top