Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Comparing the Health Effects of Ambient Particulate Matter Estimated Using Ground-Based versus Remote Sensing Exposure Estimates.

Authors: Jerrett, Michael; Turner, Michelle C; Beckerman, Bernardo S; Pope, C Arden; van Donkelaar, Aaron; Martin, Randall V; Serre, Marc; Crouse, Dan; Gapstur, Susan M; Krewski, Daniel; Diver, W Ryan; Coogan, Patricia F; Thurston, George D; Burnett, Richard T

Published In Environ Health Perspect, (2017 04)

Abstract: Remote sensing (RS) is increasingly used for exposure assessment in epidemiological and burden of disease studies, including those investigating whether chronic exposure to ambient fine particulate matter (PM2.5) is associated with mortality.We compared relative risk estimates of mortality from diseases of the circulatory system for PM2.5 modeled from RS with that for PM2.5 modeled using ground-level information.We geocoded the baseline residence of 668,629 American Cancer Society Cancer Prevention Study II (CPS-II) cohort participants followed from 1982 to 2004 and assigned PM2.5 levels to all participants using seven different exposure models. Most of the exposure models were averaged for the years 2002-2004, and one RS estimate was for a longer, contemporaneous period. We used Cox proportional hazards regression to estimate relative risks (RRs) for the association of PM2.5 with circulatory mortality and ischemic heart disease.Estimates of mortality risk differed among exposure models. The smallest relative risk was observed for the RS estimates that excluded ground-based monitors for circulatory deaths [RR = 1.02, 95% confidence interval (CI): 1.00, 1.04 per 10 μg/m3 increment in PM2.5]. The largest relative risk was observed for the land-use regression model that included traffic information (RR = 1.14, 95% CI: 1.11, 1.17 per 10 μg/m3 increment in PM2.5).We found significant associations between PM2.5 and mortality in every model; however, relative risks estimated from exposure models using ground-based information were generally larger than those estimated using RS alone.

PubMed ID: 27611476 Exiting the NIEHS site

MeSH Terms: Air Pollutants/analysis*; Air Pollution/statistics & numerical data; Environmental Exposure/statistics & numerical data*; Health Status; Humans; Models, Theoretical; Particulate Matter/analysis*; Remote Sensing Technology*; Risk Assessment

to Top