Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: The role of traffic noise on the association between air pollution and children's lung function.

Authors: Franklin, Meredith; Fruin, Scott

Published In Environ Res, (2017 08)

Abstract: Although it has been shown that traffic-related air pollution adversely affects children's lung function, few studies have examined the influence of traffic noise on this association, despite both sharing a common source. Estimates of noise exposure (Ldn, dB), and freeway and non-freeway emission concentrations of oxides of nitrogen (NOx, ppb) were spatially assigned to children in Southern California who were tested for forced vital capacity (FVC, n=1345), forced expiratory volume in 1s, (FEV1, n=1332), and asthma. The associations between traffic-related NOx and these outcomes, with and without adjustment for noise, were examined using mixed effects models. Adjustment for noise strengthened the association between NOx and reduced lung function. A 14.5mL (95% CI -40.0, 11.0mL) decrease in FVC per interquartile range (13.6 ppb) in freeway NOx was strengthened to a 34.6mL decrease after including a non-linear function of noise (95% CI -66.3, -2.78mL). Similarly, a 6.54mL decrease in FEV1 (95% CI -28.3, 15.3mL) was strengthened to a 21.1mL decrease (95% CI -47.6, 5.51) per interquartile range in freeway NOx. Our results indicate that where possible, noise should be included in epidemiological studies of the association between traffic-related air pollution on lung function. Without taking noise into account, the detrimental effects of traffic-related pollution may be underestimated.

PubMed ID: 28558263 Exiting the NIEHS site

MeSH Terms: Adolescent; Air Pollutants/toxicity*; Asthma/chemically induced; Asthma/epidemiology; California/epidemiology; Child; Child, Preschool; Environmental Exposure*; Female; Forced Expiratory Volume; Humans; Los Angeles/epidemiology; Male; Nitrogen Oxides/toxicity*; Noise, Transportation/adverse effects*; Vehicle Emissions/toxicity*; Vital Capacity

to Top