Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

Authors: Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

Published In Toxicol Appl Pharmacol, (2017 09 15)

Abstract: Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis.

PubMed ID: 28552776 Exiting the NIEHS site

MeSH Terms: Arsenites/pharmacology*; Cell Line; DNA Damage/drug effects; DNA Damage/physiology; DNA Repair/drug effects; DNA Repair/physiology; Dose-Response Relationship, Drug; Humans; Keratinocytes/drug effects; Keratinocytes/metabolism*; Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors*; Poly (ADP-Ribose) Polymerase-1/metabolism*; Poly(ADP-ribose) Polymerase Inhibitors/pharmacology; Xeroderma Pigmentosum Group A Protein/metabolism*; Zinc/pharmacology*

Back
to Top