Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: On the adjustment for covariates in genetic association analysis: a novel, simple principle to infer direct causal effects.

Authors: Vansteelandt, Stijn; Goetgeluk, Sylvie; Lutz, Sharon; Waldman, Irwin; Lyon, Helen; Schadt, Eric E; Weiss, Scott T; Lange, Christoph

Published In Genet Epidemiol, (2009 Jul)

Abstract: In genetic association studies, different complex phenotypes are often associated with the same marker. Such associations can be indicative of pleiotropy (i.e. common genetic causes), of indirect genetic effects via one of these phenotypes, or can be solely attributable to non-genetic/environmental links between the traits. To identify the phenotypes with the inducing genetic association, statistical methodology is needed that is able to distinguish between the different causes of the genetic associations. Here, we propose a simple, general adjustment principle that can be incorporated into many standard genetic association tests which are then able to infer whether an SNP has a direct biological influence on a given trait other than through the SNP's influence on another correlated phenotype. Using simulation studies, we show that, in the presence of a non-marker related link between phenotypes, standard association tests without the proposed adjustment can be biased. In contrast to that, the proposed methodology remains unbiased. Its achieved power levels are identical to those of standard adjustment methods, making the adjustment principle universally applicable in genetic association studies. The principle is illustrated by an application to three genome-wide association analyses.

PubMed ID: 19219893 Exiting the NIEHS site

MeSH Terms: Cohort Studies; Computer Simulation; Gene Frequency; Genetic Predisposition to Disease; Genetic Variation; Genome, Human; Genome-Wide Association Study*; Genotype; Heart Diseases/genetics; Humans; Models, Genetic; Models, Statistical; Phenotype; Polymorphism, Single Nucleotide*; Research Design

to Top