Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Post-injury and resolution response to repetitive inhalation exposure to agricultural organic dust in mice.

Authors: Warren, Kristi J; Wyatt, Todd A; Romberger, Debra J; Ailts, Isaak; West, William W; Nelson, Amy J; Nordgren, Tara M; Staab, Elizabeth; Heires, Art J; Poole, Jill A

Published In Safety (Basel), (2017)

Abstract: Inhalation of organic dusts in agricultural environments causes airway inflammatory diseases. Despite advances in understanding the airway response to dust-induced inflammation, less is known about the transition from lung injury to repair and recovery. The objective of this study was to define the post-inflammation homeostasis events following organic dust-induced lung injury. Using an established protocol, mice were intranasally treated with swine confinement facility organic dust extract (ODE) daily for 3 weeks (repetitive exposure) or treated daily with ODE for 3 weeks followed by no treatment for 1-4 weeks (recovery period) whereupon lavage fluid, lung tissue, and sera were processed. During recovery period, a significant decrease was observed in ODE-induced neutrophil levels after 1 week, lymphocytes at 2 weeks, and macrophages at 4 weeks in the lavage fluid. ODE-induced lung cellular aggregates and bronchiolar compartment inflammation were diminished, but persisted for 4 weeks post-injury. Alveolar inflammation resolved at 3 weeks. ODE-induced lung neutrophils were cleared by 3 weeks, B-cells by 2 weeks, and CD3+CD4+ and CD3+CD8+ T cells by 4 week recovery period. Collectively, these results identify important processes during recovery period following agricultural dust-induced inflammation, and present possible strategies for improving lung repair and resolution.

PubMed ID: 29387711 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top