Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

Publication Detail

Title: Bayesian Modeling and Analysis of Geostatistical Data.

Authors: Gelfand, Alan E; Banerjee, Sudipto

Published In Annu Rev Stat Appl, (2017 Mar)

Abstract: The most prevalent spatial data setting is, arguably, that of so-called geostatistical data, data that arise as random variables observed at fixed spatial locations. Collection of such data in space and in time has grown enormously in the past two decades. With it has grown a substantial array of methods to analyze such data. Here, we attempt a review of a fully model-based perspective for such data analysis, the approach of hierarchical modeling fitted within a Bayesian framework. The benefit, as with hierarchical Bayesian modeling in general, is full and exact inference, with proper assessment of uncertainty. Geostatistical modeling includes univariate and multivariate data collection at sites, continuous and categorical data at sites, static and dynamic data at sites, and datasets over very large numbers of sites and long periods of time. Within the hierarchical modeling framework, we offer a review of the current state of the art in these settings.

PubMed ID: 29392155 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top