Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: RAS GTPases are modified by SUMOylation.

Authors: Choi, Byeong Hyeok; Chen, Changyan; Philips, Mark; Dai, Wei

Published In Oncotarget, (2018 Jan 12)

Abstract: RAS proteins are GTPases that participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, differentiation, and autophagy. Mutations or deregulated activities of RAS are frequently the driving force for oncogenic transformation and tumorigenesis. Given the important roles of the small ubiquitin-related modifier (SUMO) pathway in controlling the stability, activity, or subcellular localization of key cellular regulators, we investigated here whether RAS proteins are posttranslationally modified (i.e. SUMOylated) by the SUMO pathway. We observed that all three RAS protein isoforms (HRAS, KRAS, and NRAS) were modified by the SUMO3 protein. SUMOylation of KRAS protein, either endogenous or ectopically expressed, was observed in multiple cell lines. The SUMO3 modification of KRAS proteins could be removed by SUMO1/sentrin-specific peptidase 1 (SENP1) and SENP2, but not by SENP6, indicating that RAS SUMOylation is a reversible process. A conserved residue in RAS, Lys-42, was a site that mediates SUMOylation. Results from biochemical and molecular studies indicated that the SUMO-E3 ligase PIASγ specifically interacts with RAS and promotes its SUMOylation. Moreover, SUMOylation of RAS appeared to be associated with its activation. In summary, our study reveals a new posttranslational modification for RAS proteins. Since we found that HRAS, KRAS, and NRAS can all be SUMOylated, we propose that SUMOylation might represent a mechanism by which RAS activities are controlled.

PubMed ID: 29435114 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top