Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Exposure of neonatal mice to bromine impairs their alveolar development and lung function.

Authors: Jilling, Tamas; Ren, Changchun; Yee, Aaron; Aggarwal, Saurabh; Halloran, Brian; Ambalavanan, Namasivayam; Matalon, Sadis

Published In Am J Physiol Lung Cell Mol Physiol, (2018 01 01)

Abstract: The halogen bromine (Br2) is used extensively in industry and stored and transported in large quantities. Its accidental or malicious release into the atmosphere has resulted in significant casualties. The pathophysiology of Br2-induced lung injury has been studied in adult animals, but the consequences of Br2 exposure to the developing lung are completely unknown. We exposed neonatal mouse littermates on postnatal day 3 (P3) to either Br2 at 400 ppm for 30 min (400/30), to Br2 at 600 ppm for 30 min (600/30), or to room air, then returned them to their dams and observed until P14. Mice exposed to Br2 had decreased survival (S) and had decreased weight (W) at P14 in the 400/30 group (S = 63.5%, W = 6.67 ± 0.08) and in the 600/30 group (S = 36.1%, W = 5.13 ± 0.67) as compared with air breathing mice (S = 100%, W = 7.96 ± 0.30). Alveolar development was impaired, as evidenced by increased mean linear intercept at P14. At P14, Br2 exposed mice also exhibited a decrease of arterial partial pressure of oxygen, decreased quasi-static lung compliance, as well as increased alpha smooth muscle actin mRNA and protein and increased mRNA for IL-1β, IL-6, CXCL1, and TNFα. Global gene expression, evaluated by RNA sequencing and Ingenuity Pathway Analysis, revealed persistent abnormalities in gene expression profiles at P14 involving pathways of "formation of lung" and "pulmonary development." The data indicate that Br2 inhalation injury early in life results in severe lung developmental consequences, wherein persistent inflammation and global altered developmental gene expression are likely mechanistic contributors.

PubMed ID: 28912380 Exiting the NIEHS site

MeSH Terms: Animals; Animals, Newborn; Bromine/toxicity*; Bronchopulmonary Dysplasia/chemically induced; Bronchopulmonary Dysplasia/metabolism; Bronchopulmonary Dysplasia/pathology*; Female; Gene Expression Regulation; Lung Injury/chemically induced; Lung Injury/metabolism; Lung Injury/pathology*; Mice; Mice, Inbred C57BL; Pregnancy; Prenatal Exposure Delayed Effects/chemically induced; Prenatal Exposure Delayed Effects/metabolism; Prenatal Exposure Delayed Effects/pathology*; Pulmonary Alveoli/drug effects; Pulmonary Alveoli/metabolism; Pulmonary Alveoli/pathology*

to Top