Skip Navigation

Publication Detail

Title: PCB126 Inhibits the Activation of AMPK-CREB Signal Transduction Required for Energy Sensing in Liver.

Authors: Gadupudi, Gopi S; Elser, Benjamin A; Sandgruber, Fabian A; Li, Xueshu; Gibson-Corley, Katherine N; Robertson, Larry W

Published In Toxicol Sci, (2018 06 01)

Abstract: 3,3',4,4',5-pentachlorobiphenyl (PCB126), a dioxin-like PCB, elicits toxicity through a wide array of noncarcinogenic effects, including metabolic syndrome, wasting, and nonalcoholic fatty-liver disease. Previously, we reported decreases in the transcription of several enzymes involved in gluconeogenesis, before the early onset of lipid accumulation. Hence, this study was aimed at understanding the impact of resultant decreases gluconeogenic enzymes on growth, weight, and metabolism in the liver, upon extended exposure. Male Sprague Dawley rats (75-100 g), fed a defined AIN-93G diet, were injected (ip) with single dose of soy oil (5 ml/kg body weight; n = 14) or PCB126 (5 µmol/kg; n = 15), 28 days, prior euthanasia. A subset of rats from each group were fasted for 12 h (vehicle [n = 6] and PCB126 [n = 4]). Rats only showed significant weight loss between days 14 and 28 (p < .05) and some mortality (p = .0413). As in our previous studies, the expression levels of enzymes involved in gluconeogenesis (Pepck-c, G6Pase, Sds, Pc, and Ldh-A) and glycogenolysis (Pygl) were strongly downregulated. The decreased expression of these enzymes in PCB126-treated rats after a 12 h fast decreased hepatic glucose production from glycogen and gluconeogenic substrates, exacerbating the hypoglycemia. Additionally, PCB126 caused hepatic steatosis and decreased the expression of the transcription factor Pparα and its targets, necessary for fatty-acid oxidation. The observed metabolic disruption across multiple branches of fasting metabolism resulted from inhibition in the activation of enzyme AMPK and transcription factor CREB signaling, necessary for "sensing" energy-deprivation and the induction of enzymes that respond to the PCB126 triggered fuel crisis in liver.

PubMed ID: 29474705 Exiting the NIEHS site

MeSH Terms: AMP-Activated Protein Kinases/metabolism*; Animals; Cyclic AMP Response Element-Binding Protein/metabolism*; Energy Metabolism/drug effects*; Gluconeogenesis/drug effects*; Glucose/metabolism; Liver Glycogen/metabolism; Liver/drug effects*; Liver/metabolism; Liver/pathology; Male; Polychlorinated Biphenyls/toxicity*; Rats, Sprague-Dawley; Signal Transduction; Transcriptome/drug effects

Back
to Top