Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: A GLM-based latent variable ordination method for microbiome samples.

Authors: B Sohn, Michael; Li, Hongzhe

Published In Biometrics, (2018 06)

Abstract: Distance-based ordination methods, such as principal coordinates analysis (PCoA), are widely used in the analysis of microbiome data. However, these methods are prone to pose a potential risk of misinterpretation about the compositional difference in samples across different populations if there is a difference in dispersion effects. Accounting for high sparsity and overdispersion of microbiome data, we propose a GLM-based Ordination Method for Microbiome Samples (GOMMS) in this article. This method uses a zero-inflated quasi-Poisson (ZIQP) latent factor model. An EM algorithm based on the quasi-likelihood is developed to estimate parameters. It performs comparatively to the distance-based approach when dispersion effects are negligible and consistently better when dispersion effects are strong, where the distance-based approach sometimes yields undesirable results. The estimated latent factors from GOMMS can be used to associate the microbiome community with covariates or outcomes using the standard multivariate tests, which can be investigated in future confirmatory experiments. We illustrate the method in simulations and an analysis of microbiome samples from nasopharynx and oropharynx.

PubMed ID: 28991375 Exiting the NIEHS site

MeSH Terms: Algorithms; Computer Simulation; Data Interpretation, Statistical*; Humans; Microbiota*; Nasopharynx/microbiology; Oropharynx/microbiology; Poisson Distribution*

Back
to Top