Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Accelerated Oxidation of Organic Contaminants by Ferrate(VI): The Overlooked Role of Reducing Additives.

Authors: Feng, Mingbao; Jinadatha, Chetan; McDonald, Thomas J; Sharma, Virender K

Published In Environ Sci Technol, (2018 10 02)

Abstract: This paper presents an accelerated ferrate(VI) (FeVIO42-, FeVI) oxidation of contaminants in 30 s by adding one-electron and two-electron transfer reductants (R(1) and R(2)). An addition of R(2) (e.g., NH2OH, AsIII, SeIV, PIII, and NO2-, and S2O32-) results in FeIV initially, while FeV is generated with the addition of R(1) (e.g., SO32-). R(2) additives, except S2O32-, show the enhanced oxidation of 20-40% of target contaminant, trimethoprim (TMP). Comparatively, enhanced oxidation of TMP was up to 100% with the addition of R(1) to FeVI. Interestingly, addition of S2O32- (i.e., R(2)) also achieves the enhanced oxidation to 100%. Removal efficiency of TMP depends on the molar ratio ([R(1)]:[FeVI] or [R(2)]:[FeVI]). Most of the reductants have the highest removal at molar ratio of ∼0.125. A FeVI-S2O32- system also oxidizes rapidly a wide range of organic contaminants (pharmaceuticals, pesticides, artificial sweetener, and X-ray contrast media) in water and real water matrices. FeV and FeIV as the oxidative species in the FeVI-S2O32--contaminant system are elucidated by determining removal of contaminants in oxygenated and deoxygenated water, applying probing agent, and identifying oxidized products of TMP and sulfadimethoxine (SDM) by FeVI-S2O32- systems. Significantly, elimination of SO2 from sulfonamide (i.e., SDM) is observed for the first time.

PubMed ID: 30187746 Exiting the NIEHS site

MeSH Terms: Iron; Kinetics; Oxidation-Reduction; Trimethoprim; Water Pollutants, Chemical*; Water Purification*

Back
to Top