Skip Navigation

Publication Detail

Title: Iron, Oxidative Stress, and Δ9 Stearoyl-CoenzymeA Desaturase Index (C16:1/C16:0): An Analysis Applying the National Health and Nutrition Examination Survey 2003-04.

Authors: Wu, Yue; Baylin, Ana; Colacino, Justin A

Published In Curr Dev Nutr, (2018 Jan)

Abstract: BACKGROUND: Stearoyl-coenzyme A desaturase (SCD) is a key enzyme in fatty acid metabolism, and elevated SCD activity is associated with multiple adverse health outcomes. Diet, hormone levels, and environmental exposures are potential factors affecting SCD activity. Less is known about the relationship between micronutrients, including iron, and SCD activity. OBJECTIVE: The aim of this study was to investigate the association between serum ferritin level, a biomarker of circulating iron levels, and the Δ9 desaturase index (C16:1/C16:0), a biomarker of estimated SCD activity, among women in the United States. METHODS: The association between serum ferritin and the Δ9 desaturase index was assessed in a cross-sectional study of 447 female participants, aged 20-49 y, from NHANES 2003-2004. The multivariate analyses were performed utilizing generalized linear modeling, adjusting for potential confounders. Mediation of the relationship between serum ferritin and Δ9 desaturase index by γ-glutamyltranspeptidase (GGT), a biomarker of oxidative stress, was also assessed. RESULTS: Increased ferritin was significantly associated with a higher Δ9 desaturase index. Adjusting for waist circumference, age, race, and cotinine levels, an interquartile range increase in serum ferritin corresponded to 3.92% (95% CI: 0.88%, 7.05%) higher Δ9 desaturase index. GGT, the biomarker used to measure oxidative stress level, did not appear to mediate the association between ferritin and Δ9 desaturase index. After stratifying by pregnancy status, these associations were limited to nonpregnant individuals. CONCLUSIONS: Elevated SCD activity may be associated with increased iron storage inside the human body; the association did not appear to be mediated via oxidative stress, as estimated by GGT levels.

PubMed ID: 29955721 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top