Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome.

Authors: Mutlu, Ece A; Comba, Işın Y; Cho, Takugo; Engen, Phillip A; Yazıcı, Cemal; Soberanes, Saul; Hamanaka, Robert B; Niğdelioğlu, Recep; Meliton, Angelo Y; Ghio, Andrew J; Budinger, G R Scott; Mutlu, Gökhan M

Published In Environ Pollut, (2018 Sep)

Abstract: Recent studies suggest an association between particulate matter (PM) air pollution and gastrointestinal (GI) disease. In addition to direct deposition, PM can be indirectly deposited in oropharynx via mucociliary clearance and upon swallowing of saliva and mucus. Within the GI tract, PM may alter the GI epithelium and gut microbiome. Our goal was to determine the effect of PM on gut microbiota in a murine model of PM exposure via inhalation. C57BL/6 mice were exposed via inhalation to either concentrated ambient particles or filtered air for 8-h per day, 5-days a week, for a total of 3-weeks. At exposure's end, GI tract tissues and feces were harvested, and gut microbiota was analyzed. Alpha-diversity was modestly altered with increased richness in PM-exposed mice compared to air-exposed mice in some parts of the GI tract. Most importantly, PM-induced alterations in the microbiota were very apparent in beta-diversity comparisons throughout the GI tract and appeared to increase from the proximal to distal parts. Changes in some genera suggest that distinct bacteria may have the capacity to bloom with PM exposure. Exposure to PM alters the microbiota throughout the GI tract which maybe a potential mechanism that explains PM induced inflammation in the GI tract.

PubMed ID: 29783199 Exiting the NIEHS site

MeSH Terms: Air Pollutants/analysis; Air Pollutants/toxicity*; Air Pollution/analysis; Animals; Gastrointestinal Microbiome/drug effects*; Gastrointestinal Tract/drug effects; Gastrointestinal Tract/microbiology; Inflammation; Inhalation Exposure/adverse effects; Inhalation Exposure/analysis*; Mice; Mice, Inbred C57BL; Microbiota; Particulate Matter/toxicity*

Back
to Top