Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification.

Authors: Chen, Wansu; Qian, Lei; Shi, Jiaxiao; Franklin, Meredith

Published In BMC Med Res Methodol, (2018 06 22)

Abstract: Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood.In this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response).Point estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased.Under model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios.

PubMed ID: 29929477 Exiting the NIEHS site

MeSH Terms: Algorithms*; Biometry/methods; Humans; Models, Statistical*; Poisson Distribution*; Regression Analysis*; Risk Assessment/methods; Risk Assessment/statistics & numerical data; Risk Factors

to Top