Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: The Impact of Novel Assessment Methodologies in Toxicology on Green Chemistry and Chemical Alternatives.

Authors: Rusyn, Ivan; Greene, Nigel

Published In Toxicol Sci, (2018 02 01)

Abstract: The field of experimental toxicology is rapidly advancing by incorporating novel techniques and methods that provide a much more granular view into the mechanisms of potential adverse effects of chemical exposures on human health. The data from various in vitro assays and computational models are useful not only for increasing confidence in hazard and risk decisions, but also are enabling better, faster and cheaper assessment of a greater number of compounds, mixtures, and complex products. This is of special value to the field of green chemistry where design of new materials or alternative uses of existing ones is driven, at least in part, by considerations of safety. This article reviews the state of the science and decision-making in scenarios when little to no data may be available to draw conclusions about which choice in green chemistry is "safer." It is clear that there is no "one size fits all" solution and multiple data streams need to be weighed in making a decision. Moreover, the overall level of familiarity of the decision-makers and scientists alike with new assessment methodologies, their validity, value and limitations is evolving. Thus, while the "impact" of the new developments in toxicology on the field of green chemistry is great already, it is premature to conclude that the data from new assessment methodologies have been widely accepted yet.

PubMed ID: 29378069 Exiting the NIEHS site

MeSH Terms: Animals; Chemical Safety/methods*; Computer Simulation; Green Chemistry Technology/methods*; Hazardous Substances/chemistry; Hazardous Substances/toxicity*; Humans; Risk Assessment; Toxicity Tests; Toxicology/methods*

to Top