Skip Navigation

Publication Detail

Title: Comparison of PM2.5 Exposure in Hazy and Non-Hazy Days in Nanjing, China.

Authors: Zhang, Ting; Chillrud, Steven N; Ji, Junfeng; Chen, Yang; Pitiranggon, Masha; Li, Wenqing; Liu, Zhenyang; Yan, Beizhan

Published In Aerosol Air Qual Res, (2017 Sep)

Abstract: Fine particulate matter (PM2.5), levels of which are about 6 times the 2014 WHO air quality guidelines for 190 cities in China, has been found to be associated with various adverse health outcomes. In this study, personal PM2.5 exposures were monitored along a fixed routine that included 19 types of non-residential micro-environments (MEs) on 4 hazy days (ambient PM2.5 292 ± 70 μg m-3) and 2 non-hazy days (55 ± 16 μg m-3) in Nanjing, China using miniaturized real-time portable particulate sensors that also collect integrated filters of PM2.5 (MicroPEMs, Research Triangle Institute (RTI), NC). Gravimetric correction is necessary for nephelometer devices in calculating real-time PM levels. During both hazy and non-hazy days, personal PM2.5 levels were generally higher in MEs with noticeable PM2.5 sources than MEs serving as receptor sites, higher in open MEs than indoor MEs, and higher in densely populated MEs than MEs with few people. Personal PM2.5 levels measured during hazy and non-hazy days were 242 ± 91 μg m-3 and 103 ± 147 μg m-3, respectively. The ratio of personal exposure to ambient PM2.5 levels (rp/a ) was less than 1.0 and less variable on hazy days (0.85 ± 0.31); while it was larger than 1.0 and more variable on non-hazy days (1.71 ± 1.93), confirming the importance of local sources other than ambient during non-hazy days. Air handling methods (e.g., ventilation/filtration) impacted personal exposures in enclosed locations on both types of days. Street food vendors with cooking emissions were MEs with the highest personal PM2.5 levels while subway cars in Nanjing were relatively clean due to good air filtration on both hazy and non-hazy days. In summary, on hazy days, personal exposure was mainly affected by the regional ambient levels, while on non-hazy days, local sources together with ambient levels determined personal exposure levels.

PubMed ID: 30581458 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top