Skip Navigation

Publication Detail

Title: Distributed Lag Interaction Models with Two Pollutants.

Authors: Chen, Yin-Hsiu; Mukherjee, Bhramar; Berrocal, Veronica J

Published In J R Stat Soc Ser C Appl Stat, (2019 Jan)

Abstract: Distributed lag models (DLMs) have been widely used in environmental epidemiology to quantify the lagged effects of air pollution on a health outcome of interest such as mortality and morbidity. Most previous DLM approaches only consider one pollutant at a time. In this article, we propose distributed lag interaction model (DLIM) to characterize the joint lagged effect of two pollutants. One natural way to model the interaction surface is by assuming that the underlying basis functions are tensor products of the basis functions that generate the main-effect distributed lag functions. We extend Tukey's one-degree-of-freedom interaction structure to the two-dimensional DLM context. We also consider shrinkage versions of the two to allow departure from the specified Tukey's interaction structure and achieve bias-variance tradeoff. We derive the marginal lag effects of one pollutant when the other pollutant is fixed at certain quantiles. In a simulation study, we show that the shrinkage methods have better average performance in terms of mean squared error (MSE) across different scenarios. We illustrate the proposed methods by using the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) data to model the joint effects of PM10 and O3 on mortality count in Chicago, Illinois, from 1987 to 2000.

PubMed ID: 30636815 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top