Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Adaptive Signature Design- review of the biomarker guided adaptive phase -III controlled design.

Authors: Bhattacharyya, Arinjita; Rai, Shesh N

Published In Contemp Clin Trials Commun, (2019 Sep)

Abstract: Genomics having a profound impact on oncology drug development necessitates the use of genomic signatures for therapeutic strategy and emerging medicine proposals. Since its advent in the arena of clinical trials biomarker-related predictive methods for the identification and selection of patient subgroups, with optimal treatment response, are widely used. Genetic signatures which are accountable for the differential response to treatments are experimentally recognizable and analytically validated in phase II stage of clinical trials. The availability of robust and validated biomarkers in phase III is limited. Hence, the development of a clinical trial design without the availability of biomarker identity for treatment-sensitive patients becomes indispensable. Adaptive Signature Design (ASD) is a design procedure of developing and validating a predictive classifier (diagnostic testing strategy) when the signature of subjects responding differentially to treatment is remote in the context of the study. This review provides a detailed methodology and statistical background of this pioneering design developed by Freidlin and Simon (2005). In addition, it concentrates on the advances in ASD regarding statistical issues such as predictive assay identification, classification techniques, statistical methods, subgroup search, choice of differentially expressed genes, and multiplicity correction. The statistical methodology behind the design is explained with the intent of building the ground steps for future research approachable, especially for beginning researchers. Most of the existing research articles give a microcosmic view of the design and lack in describing the details behind the methodology. This study covers those details and marks the novelty of our research.

PubMed ID: 31289760 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top