Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Reusable Functionalized Hydrogel Sorbents for Removing Long- and Short-Chain Perfluoroalkyl Acids (PFAAs) and GenX from Aqueous Solution.

Authors: Huang, Po-Jung; Hwangbo, Myung; Chen, Zheyuan; Liu, Yina; Kameoka, Jun; Chu, Kung-Hui

Published In ACS Omega, (2018 Dec 31)

Abstract: Per- and poly-fluoroalkyl substances (PFASs) are man-made chemicals that are toxic and widely detected in the environment, including drinking water sources. A cost-effective treatment process for PFASs is currently not available. We developed reusable hydrogel sorbents to remove long- and short-chain perfluoroalkyl acids and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX), which is are emerging PFAS. Through fluoridation and amination of poly(ethylene glycol) diacrylate (PEGDA), the newly synthesized sorbents can sorb the five targeted PFASs (perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorobutanesulfonic acid (PFBS), and perfluorobutanoic acid (PFBA) and GenX) to different degrees from aqueous solution. Aminated PEGDA showed the highest sorption capacity for all five PFASs, particularly for PFBA and PFBS. The bifunctionalized PEGDA showed higher capacities for PFOA and PFOS, suggesting that both hydrophobic interactions and charges contribute to the sorption. Both aminated and bifunctionalized sorbents can remove GenX from water, with the highest sorption capacity of 98.7 μmol g aminated PEGDA-1 within 6 h. The absorbed PFASs on the sorbents were observed and characterized by Fourier-transform infrared spectroscopy. The spent sorbents were reusable after readily regenerated with 70% methanol contained 1% NaCl.

PubMed ID: 31458350 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top