Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Diphenyl Phosphate-Induced Toxicity During Embryonic Development.

Authors: Mitchell, Constance A; Reddam, Aalekhya; Dasgupta, Subham; Zhang, Sharon; Stapleton, Heather M; Volz, David C

Published In Environ Sci Technol, (2019 04 02)

Abstract: Diphenyl phosphate (DPHP) is an aryl phosphate ester (APE) used as an industrial catalyst and chemical additive and is the primary metabolite of flame retardant APEs, including triphenyl phosphate (TPHP). Minimal DPHP-specific toxicity studies have been published despite ubiquitous exposure within human populations following metabolism of TPHP and other APEs. Therefore, the objective of this study was to determine the potential for DPHP-induced toxicity during embryonic development. Using zebrafish as a model, we found that DPHP significantly increased the distance between the sinus venosus and bulbus arteriosis (SV-BA) at 72 h postfertilization (hpf) following initiation of exposure before and after cardiac looping. Interestingly, pretreatment with d-mannitol mitigated DPHP-induced effects on SV-BA length despite the absence of DPHP effects on pericardial area, suggesting that DPHP-induced cardiac defects are independent of pericardial edema formation. Using mRNA-sequencing, we found that DPHP disrupts pathways related to mitochondrial function and heme biosynthesis; indeed, DPHP significantly decreased hemoglobin levels in situ at 72 hpf following exposure from 24 to 72 hpf. Overall, our findings suggest that, similar to TPHP, DPHP impacts cardiac development, albeit the potency of DPHP is significantly less than TPHP within developing zebrafish.

PubMed ID: 30864794 Exiting the NIEHS site

MeSH Terms: Animals; Biphenyl Compounds; Embryonic Development*; Flame Retardants*; Humans; Phosphates

Back
to Top