Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Predicting tubular reabsorption with a human kidney proximal tubule tissue-on-a-chip and physiologically-based modeling.

Authors: Sakolish, Courtney; Chen, Zunwei; Dalaijamts, Chimeddulam; Mitra, Kusumica; Liu, Yina; Fulton, Tracy; Wade, Terry L; Kelly, Edward J; Rusyn, Ivan; Chiu, Weihsueh A

Published In Toxicol In Vitro, (2020 Mar)

Abstract: Kidney is a major route of xenobiotic excretion, but the accuracy of preclinical data for predicting in vivo clearance is limited by species differences and non-physiologic 2D culture conditions. Microphysiological systems can potentially increase predictive accuracy due to their more realistic 3D environment and incorporation of dynamic flow. We used a renal proximal tubule microphysiological device to predict renal reabsorption of five compounds: creatinine (negative control), perfluorooctanoic acid (positive control), cisplatin, gentamicin, and cadmium. We perfused compound-containing media to determine renal uptake/reabsorption, adjusted for non-specific binding. A physiologically-based parallel tube model was used to model reabsorption kinetics and make predictions of overall in vivo renal clearance. For all compounds tested, the kidney tubule chip combined with physiologically-based modeling reproduces qualitatively and quantitatively in vivo tubular reabsorption and clearance. However, because the in vitro device lacks filtration and tubular secretion components, additional information on protein binding and the importance of secretory transport is needed in order to make accurate predictions. These and other limitations, such as the presence of non-physiological compounds such as antibiotics and bovine serum albumin in media and the need to better characterize degree of expression of important transporters, highlight some of the challenges with using microphysiological devices to predict in vivo pharmacokinetics.

PubMed ID: 31857146 Exiting the NIEHS site

MeSH Terms: Cadmium/metabolism; Caprylates/metabolism; Cisplatin/metabolism; Creatinine/metabolism; Fluorocarbons/metabolism; Gentamicins/metabolism; Humans; Kidney Tubules, Proximal/metabolism*; Models, Biological*; Renal Reabsorption*; Tissue Culture Techniques*

to Top