Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: A latent unknown clustering integrating multi-omics data (LUCID) with phenotypic traits.

Authors: Peng, Cheng; Wang, Jun; Asante, Isaac; Louie, Stan; Jin, Ran; Chatzi, Lida; Casey, Graham; Thomas, Duncan C; Conti, David V

Published In Bioinformatics, (2020 02 01)

Abstract: MOTIVATION: Epidemiologic, clinical and translational studies are increasingly generating multiplatform omics data. Methods that can integrate across multiple high-dimensional data types while accounting for differential patterns are critical for uncovering novel associations and underlying relevant subgroups. RESULTS: We propose an integrative model to estimate latent unknown clusters (LUCID) aiming to both distinguish unique genomic, exposure and informative biomarkers/omic effects while jointly estimating subgroups relevant to the outcome of interest. Simulation studies indicate that we can obtain consistent estimates reflective of the true simulated values, accurately estimate subgroups and recapitulate subgroup-specific effects. We also demonstrate the use of the integrated model for future prediction of risk subgroups and phenotypes. We apply this approach to two real data applications to highlight the integration of genomic, exposure and metabolomic data. AVAILABILITY AND IMPLEMENTATION: The LUCID method is implemented through the LUCIDus R package available on CRAN (https://CRAN.R-project.org/package=LUCIDus). SUPPLEMENTARY INFORMATION: Supplementary materials are available at Bioinformatics online.

PubMed ID: 31504184 Exiting the NIEHS site

MeSH Terms: Biomarkers; Cluster Analysis; Genomics*; Phenotype; Software*

Back
to Top