Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences.

Authors: Vakirlis, Nikolaos; Acar, Omer; Hsu, Brian; Castilho Coelho, Nelson; Van Oss, S Branden; Wacholder, Aaron; Medetgul-Ernar, Kate; Bowman 2nd, Ray W; Hines, Cameron P; Iannotta, John; Parikh, Saurin Bipin; McLysaght, Aoife; Camacho, Carlos J; O'Donnell, Allyson F; Ideker, Trey; Carvunis, Anne-Ruxandra

Published In Nat Commun, (2020 02 07)

Abstract: Recent evidence demonstrates that novel protein-coding genes can arise de novo from non-genic loci. This evolutionary innovation is thought to be facilitated by the pervasive translation of non-genic transcripts, which exposes a reservoir of variable polypeptides to natural selection. Here, we systematically characterize how these de novo emerging coding sequences impact fitness in budding yeast. Disruption of emerging sequences is generally inconsequential for fitness in the laboratory and in natural populations. Overexpression of emerging sequences, however, is enriched in adaptive fitness effects compared to overexpression of established genes. We find that adaptive emerging sequences tend to encode putative transmembrane domains, and that thymine-rich intergenic regions harbor a widespread potential to produce transmembrane domains. These findings, together with in-depth examination of the de novo emerging YBR196C-A locus, suggest a novel evolutionary model whereby adaptive transmembrane polypeptides emerge de novo from thymine-rich non-genic regions and subsequently accumulate changes molded by natural selection.

PubMed ID: 32034123 Exiting the NIEHS site

MeSH Terms: Adaptation, Biological/genetics; Endoplasmic Reticulum/genetics; Endoplasmic Reticulum/metabolism; Evolution, Molecular*; Gene Expression Regulation, Fungal; Genetic Fitness; Intracellular Membranes/metabolism; Membrane Proteins/chemistry; Membrane Proteins/genetics*; Open Reading Frames; Protein Domains/genetics; Saccharomyces cerevisiae Proteins/genetics*; Saccharomyces cerevisiae/genetics; TATA-Binding Protein Associated Factors/genetics*; Thymine*; Transcription Factor TFIID/genetics*

Back
to Top