Skip Navigation

Publication Detail

Title: Rainbow trout, Oncorhynchus mykiss, as a model for aromatase inhibition.

Authors: Shilling, A D; Carlson, D B; Williams, D E

Published In J Steroid Biochem Mol Biol, (1999 Jul-Aug)

Abstract: The feasibility of utilizing rainbow trout, Oncorhynchus mykiss, as an alternative model for studying the inhibition of aromatase (CYP 19) was investigated. The suppression of estrogen-dependent tumors by aromatase inhibitors has been important in the treatment of breast cancer. Estrogens, estrogen precursors and xenoestrogens have been found to promote liver cancer in the trout model. A steroid, 4-hydroxy-4-androstene-3,17-dione (4-OHA), and non-steroids, aminoglutethimide (AG) and Letrozole (CGS 20267), all of which are known aromatase inhibitors in rats and humans, were examined in vitro for activity in trout ovarian microsomes. Aromatase activity was quantified as the release of 3H2O from the conversion of [3H]-4-androstene-3,17-dione to 17beta-estradiol and estrone. Trout ovarian microsomes exhibited activity between 39-60 fmol mg(-1) min(-1) with a calculated Vmax of 71.1 fmol mg(-1) min(-1) when incubated at 25 degrees C with 200 nM 4-androstene-3,17-dione (K(M) = 435 nM). Significant inhibition by 4-OHA up to 80% was seen at 1.5 microM. At 2000 microM, AG decreased aromatase activity by up to 82%. Letrozole reduced aromatase activity a maximum of 90% in a dose-dependent manner, but the Ki (2.3 microM) was 1000-fold higher than reported in human trials. Indole-3-carbinol and some of its derivatives, two DDE isomers and four flavones (except alpha-naphthoflavone) at 1000 microM did not significantly inhibit aromatase in vitro. Letrozole and clotrimazole, fed to juvenile rainbow trout at doses up to 1000 ppm for 2 weeks, were not effective in suppressing dehydroepiandrosterone (DHEA) induced increases in vitellogenin and 17beta-estradiol levels. These results document that trout aromatase is sensitive to inhibition in vitro by known inhibitors of the mammalian enzyme. The mechanism(s) for lack of inhibition in vivo is currently unknown and must be further investigated in order to develop a trout model for studying the role of aromatase in carcinogenesis.

PubMed ID: 10529006 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top