Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Therapeutic Efficacy of the N,N' Bis-(2-Mercaptoethyl) Isophthalamide Chelator for Methylmercury Intoxication in Caenorhabditis elegans.

Authors: Ke, Tao; Bornhorst, Julia; Schwerdtle, Tanja; Santamaría, Abel; Soare, Félix Alexandre Antunes; Rocha, João B T; Farina, Marcelo; Bowman, Aaron B; Aschner, Michael

Published In Neurotox Res, (2020 Jun)

Abstract: Methylmercury (MeHg) is a global pollutant and potent neurotoxin. In humans, MeHg damages the central nervous system (CNS), causing irreversible neuronal shrinkage, and neuronal loss. Most chelators for clinical mercury detoxification are thiol-containing agents. N,N 'bis-(2-mercaptoethyl) isophthalamide (NBMI) is a lipophilic thiol agent synthesized from natural chemicals. NBMI has high affinity for mercury, cadmium and lead, and can decrease their concentrations in polluted water. However, the efficacy of NBMI for MeHg toxicity has yet to be evaluated in intact animals. Here we used the nematode Caenorhabditis elegans (C. elegans) to test the efficacy of NBMI in attenuating MeHg toxicity in vivo in the whole organism. The results showed that NBMI reduced both the acute toxicity (125 μM MeHg, 1 h) and chronic (5 μM MeHg, 24 h) MeHg toxicity. Co-treatment with NBMI achieved maximal efficacy against MeHg toxicity, however delayed treatment 6 days after initiation of exposure was also effective at reducing neurotoxicity. Co-treatment of NBMI reduced the worms' death rate, structural damage in DAergic neurons, and restored antioxidant response levels. While this study provides proof of principle for the therapeutic value of NBMI in MeHg toxicity, future studies are needed to address the cellular and molecular mechanisms and translatability of these effects to humans and other animals.

PubMed ID: 32236898 Exiting the NIEHS site

MeSH Terms: Animals; Benzene Derivatives/administration & dosage*; Caenorhabditis elegans; Caenorhabditis elegans Proteins/metabolism; Chelating Agents/administration & dosage*; Environmental Pollutants/toxicity*; Gene Expression/drug effects; Methylmercury Compounds/toxicity*; Sulfhydryl Compounds/administration & dosage*

to Top