Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: DNA-editing enzymes as potential treatments for heteroplasmic mtDNA diseases.

Authors: Zekonyte, U; Bacman, S R; Moraes, C T

Published In J Intern Med, (2020 06)

Abstract: Mutations in the mitochondrial genome are the cause of many debilitating neuromuscular disorders. Currently, there is no cure or treatment for these diseases, and symptom management is the only relief doctors can provide. Although supplements and vitamins are commonly used in treatment, they provide little benefit to the patient and are only palliative. This is why gene therapy is a promising research topic to potentially treat and, in theory, even cure diseases caused by mutations in the mitochondrial DNA (mtDNA). Mammalian cells contain approximately a thousand copies of mtDNA, which can lead to a phenomenon called heteroplasmy, where both wild-type and mutant mtDNA molecules co-exist within the cell. Disease only manifests once the per cent of mutant mtDNA reaches a high threshold (usually >80%), which causes mitochondrial dysfunction and reduced ATP production. This is a useful feature to take advantage of for gene therapy applications, as not every mutant copy of mtDNA needs to be eliminated, but only enough to shift the heteroplasmic ratio below the disease threshold. Several DNA-editing enzymes have been used to shift heteroplasmy in cell culture and mice. This review provides an overview of these enzymes and discusses roadblocks of applying these to gene therapy in humans.

PubMed ID: 32176378 Exiting the NIEHS site

MeSH Terms: Animals; DNA Repair Enzymes/genetics*; DNA Repair Enzymes/therapeutic use; DNA Repair/genetics; DNA, Mitochondrial/genetics*; Genetic Therapy*/methods; Heteroplasmy/genetics*; Humans; Mitochondrial Diseases

Back
to Top