Skip Navigation

Publication Detail

Title: Household Dust as a Repository of Chemical Accumulation: New Insights from a Comprehensive High-Resolution Mass Spectrometric Study.

Authors: Moschet, Christoph; Anumol, Tarun; Lew, Bonny M; Bennett, Deborah H; Young, Thomas M

Published In Environ Sci Technol, (2018 03 06)

Abstract: Chemical exposure in household dust poses potential risks to human health but has been studied incompletely thus far. Most analytical studies have focused on one or several compound classes, with analysis performed by either liquid or gas chromatography coupled with mass spectrometry (LC-MS or GC-MS). However, a comprehensive investigation of individual dust samples is missing. The present study comprehensively characterizes chemicals in dust by applying a combination of target, suspect, and nontarget screening approaches using both LC and GC with quadrupole time-of-flight (Q/TOF) MS. First, the extraction method was optimized to streamline detection of LC-Q/TOF and GC-Q/TOF amenable compounds and was successfully validated with over 100 target compounds. Nontarget screening with GC-Q/TOF was done by spectral deconvolution followed by a library search. Suspect screening by LC-Q/TOF was carried out with an accurate mass spectral library. Finally, LC-Q/TOF nontarget screening was carried out by extracting molecular features, acquiring tandem mass spectrometric (MS/MS) spectra, and performing compound identification by use of in silico fragmentation software tools. In total, 271 chemicals could be detected in 38 dust samples, 163 of which could be unambiguously confirmed by a reference standard. Many of them, such as the plastic leachable 7,9-di- tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione (CAS 82304-66-3) and three organofluorine compounds, are of emerging concern and their presence in dust has been underestimated. Advantages and drawbacks of the different approaches and analytical instruments are critically discussed.

PubMed ID: 29437387 Exiting the NIEHS site

MeSH Terms: Chromatography, Liquid; Dust*; Gas Chromatography-Mass Spectrometry; Humans; Plastics; Tandem Mass Spectrometry*

Back
to Top