Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

Publication Detail

Title: Bayesian State Space Modeling of Physical Processes in Industrial Hygiene.

Authors: Abdalla, Nada; Banerjee, Sudipto; Ramachandran, Gurumurthy; Arnold, Susan

Published In Technometrics, (2020)

Abstract: Exposure assessment models are deterministic models derived from physical-chemical laws. In real workplace settings, chemical concentration measurements can be noisy and indirectly measured. In addition, inference on important parameters such as generation and ventilation rates are usually of interest since they are difficult to obtain. In this article, we outline a flexible Bayesian framework for parameter inference and exposure prediction. In particular, we devise Bayesian state space models by discretizing the differential equation models and incorporating information from observed measurements and expert prior knowledge. At each time point, a new measurement is available that contains some noise, so using the physical model and the available measurements, we try to obtain a more accurate state estimate, which can be called filtering. We consider Monte Carlo sampling methods for parameter estimation and inference under nonlinear and non-Gaussian assumptions. The performance of the different methods is studied on computer-simulated and controlled laboratory-generated data. We consider some commonly used exposure models representing different physical hypotheses. Supplementary materials for this article are available online.

PubMed ID: 32499665 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top