Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Lumping in pharmacokinetics.

Authors: Brochot, Céline; Tóth, János; Bois, Frédéric Y

Published In J Pharmacokinet Pharmacodyn, (2005 Dec)

Abstract: Pharmacokinetic (PK) models simplify biological complexity by dividing the body into interconnected compartments. The time course of the chemical's amount (or concentration) in each compartment is then expressed as a system of ordinary differential equations. The complexity of the resulting system of equations can rapidly increase if a precise description of the organism is needed. However, difficulties arise when the PK model contains more variables and parameters than comfortable for mathematical and computational treatment. To overcome such difficulties, mathematical lumping methods are new and powerful tools. Such methods aim at reducing a differential system by aggregating several variables into one. Typically, the lumped model is still a differential equation system, whose variables are interpretable in terms of variables of the original system. In practice, the reduced model is usually required to satisfy some constraints. For example, it may be necessary to keep state variables of interest for prediction unlumped. To accommodate such constraints, constrained lumping methods have are also available. After presenting the theory, we study, here, through practical examples, the potential of such methods in toxico/pharmacokinetics. As a tutorial, we first simplify a 2-compartment pharmacokinetic model by symbolic lumping. We then explore the reduction of a 6-compartment physiologically based pharmacokinetic model for 1,3-butadiene with numerical constrained lumping. The lumping methods presented here can be easily automated, and are applicable to first-order ordinary differential equation systems.

PubMed ID: 16341473 Exiting the NIEHS site

MeSH Terms: Algorithms; Butadienes/metabolism; Butadienes/pharmacokinetics; Computer Simulation; Humans; Linear Models; Models, Biological*; Pharmacokinetics*

to Top