Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: A data-driven optimization algorithm for differential algebraic equations with numerical infeasibilities.

Authors: Beykal, Burcu; Onel, Melis; Onel, Onur; Pistikopoulos, Efstratios N

Published In AIChE J, (2020 Oct)

Abstract: Support Vector Machines (SVMs) based optimization framework is presented for the data-driven optimization of numerically infeasible Differential Algebraic Equations (DAEs) without the full discretization of the underlying first-principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data-driven approach is demonstrated on a 2-dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multi-dimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data-driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey-box optimization algorithm, namely the ARGONAUT framework.

PubMed ID: 32921798 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top