Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Updates on defining and detecting diarrheagenic Escherichia coli pathotypes.

Authors: Jesser, Kelsey J; Levy, Karen

Published In Curr Opin Infect Dis, (2020 10)

Abstract: PURPOSE OF REVIEW: Several types of Escherichia coli cause acute diarrhea in humans and are responsible for a large burden of disease globally. The purpose of this review is to summarize diarrheagenic Escherichia coli (DEC) pathotype definitions and discuss existing and emerging molecular, genomic, and gut microbiome methods to detect, define, and study DEC pathotypes. RECENT FINDINGS: DEC pathotypes are currently diagnosed by molecular detection of unique virulence genes. However, some pathotypes have defied coherent molecular definitions because of imperfect gene targets, and pathotype categories are complicated by hybrid strains and isolation of pathotypes from asymptomatic individuals. Recent progress toward more efficient, sensitive, and multiplex DEC pathotype detection has been made using emerging PCR-based technologies. Genomics and gut microbiome detection methods continue to advance rapidly and are contributing to a better understanding of DEC pathotype diversity and functional potential. SUMMARY: DEC pathotype categorizations and detection methods are useful but imperfect. The implementation of molecular and sequence-based methods and well designed epidemiological studies will continue to advance understanding of DEC pathotypes. Additional emphasis is needed on sequencing DEC genomes from regions of the world where they cause the most disease and from the pathotypes that cause the greatest burden of disease globally.

PubMed ID: 32773499 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top