Skip Navigation

Publication Detail

Title: Preconceptional diet manipulation and fetus number can influence placenta endocrine function in sheep.

Authors: Rosales-Nieto, C A; Ehrhardt, R; Mantey, A; Makela, B; Byrem; Veiga-Lopez, A

Published In Domest Anim Endocrinol, (2021 01)

Abstract: Changes in maternal nutrition during pregnancy can result in profound effects on placental function and fetal development. Although the preconceptional period holds the potential to reprogram embryonic and placental development, little is known regarding the effects of premating nutritional manipulation on placental function and fetal and postnatal offspring growth. To test this, Polypay-Dorset sheep (n = 99) were assigned to 1 of 3 nutritional treatments (n = 33/treatment) receiving 50% (UN: undernutrition), 100% (C: control), or 200% (ON: overnutrition) of maintenance energy requirements for 21 d before mating during April-May (increasing photoperiod). Thereafter, diets were the same across groups. We evaluated maternal reproductive variables and maternal and offspring weight and body mass index through weaning. Maternal plasma was collected through pregnancy until postnatal day 1 to assay pregnancy-associated glycoproteins (PAGs) and progesterone. Fertility rate was similar among treatments, but ON females had a higher reproductive rate (UN: 82%; C: 100%, ON: 145%). When correcting by total birth weight, twin pregnancies had lower PAGs and progesterone versus singleton pregnancies (P < 0.001). At birth, UN lambs were heavier than C lambs regardless of birth type (P < 0.01). Growth velocity, daily gain, and weaning weight were similar, but UN and ON females grew faster and were heavier at weaning versus C females. We demonstrated that a 3-wk preconceptional maternal undernutrition or overnutrition, when correcting by total birth weight, results in lower endocrine capacity in twin pregnancies. Preconceptional maternal undernutrition and overnutrition increased postnatal female lamb growth, suggestive of reprogramming of pathways regulating growth before conception. This highlights how preconceptional nutrition can result in marked sex-specific differences.

PubMed ID: 33160155 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top