Skip Navigation

Publication Detail

Title: Cholinergic synaptic signaling mechanisms underlying behavioral teratogenicity: effects of nicotine, chlorpyrifos, and heroin converge on protein kinase C translocation in the intermedial part of the hyperstriatum ventrale and on imprinting behavior in an avian model.

Authors: Izrael, Michal; Van der Zee, Eddy A; Slotkin, Theodore A; Yanai, Joseph

Published In J Neurosci Res, (2004 Nov 15)

Abstract: A wide variety of otherwise unrelated neuroteratogens elicit a common set of behavioral defects centering around cholinergic contributions to cognitive function. We utilized the developing chick to overcome confounds related to maternal effects and compared the actions of nicotine, chlorpyrifos, and heroin on cholinergic signaling in the intermedial part of the hyperstriatum ventrale (IMHV), which controls imprinting behavior. Chicken eggs were injected with nicotine (10 mg/kg of egg), chlorpyrifos (10 mg/kg of egg), or heroin (20 mg/kg of egg; all doses below the threshold for dysmorphology) on incubation days (ID) 0 and 5, and then tests were conducted posthatching. All three compounds elicited significant deficits in imprinting behavior. We also found defects in cholinergic synaptic signaling specifically involving the muscarinic receptor-mediated membrane translocation of protein kinase C (PKC)-gamma and in the basal levels of both PKCgamma and PKCbetaII, the two isoforms known to be relevant to behavioral performance. In contrast, there were no alterations in the response of PKCalpha, an isoform that does not contribute to the behavior, nor were cytosolic levels of any of the isoforms affected. Taken together with similar results obtained in rodents, our findings suggest that disparate neuroteratogens all involve signaling defects centering on the ability of cholinergic receptors to elicit PKCgamma translocation/activation and that this effect is direct, i.e., not mediated by maternal confounds. The chick thus provides a suitable model for the rapid screening of neuroteratogens and elucidation of the mechanisms underlying behavioral anomalies.

PubMed ID: 15470723 Exiting the NIEHS site

MeSH Terms: Analysis of Variance; Animals; Animals, Newborn; Behavior, Animal; Biological Transport; Blotting, Western/methods; Body Weight/drug effects; Chick Embryo; Chickens; Chlorpyrifos/toxicity*; Cholinergic Agents/toxicity; Corpus Striatum/drug effects*; Dose-Response Relationship, Drug; Female; Heroin/toxicity*; Imprinting (Psychology)/drug effects*; Models, Animal; Motor Activity/drug effects; Narcotics/toxicity; Nicotine/toxicity*; Protein Kinase C/metabolism*; Signal Transduction/drug effects*; Time Factors

Back
to Top