Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs.

Authors: Pickhardt, Paul C; Folt, Carol L; Chen, Celia Y; Klaue, Bjoern; Blum, Joel D

Published In Proc Natl Acad Sci U S A, (2002 Apr 2)

Abstract: Mercury accumulation in fish is a global public health concern, because fish are the primary source of toxic methylmercury to humans. Fish from all lakes do not pose the same level of risk to consumers. One of the most intriguing patterns is that potentially dangerous mercury concentrations can be found in fish from clear, oligotrophic lakes whereas fish from greener, eutrophic lakes often carry less mercury. In this study, we experimentally tested the hypothesis that increasing algal biomass reduces mercury accumulation at higher trophic levels through the dilution of mercury in consumed algal cells. Under bloom dilution, as algal biomass increases, the concentration of mercury per cell decreases, resulting in a lower dietary input to grazers and reduced bioaccumulation in algal-rich eutrophic systems. To test this hypothesis, we added enriched stable isotopes of Hg to experimental mesocosms and measured the uptake of toxic methylmercury (CH3 200Hg+) and inorganic 201Hg2+ by biota at several algal concentrations. We reduced absolute spike detection limits by 50-100 times compared with previous techniques, which allowed us to conduct experiments at the extremely low aqueous Hg concentrations that are typical of natural systems. We found that increasing algae reduced CH3Hg+ concentrations in zooplankton 2-3-fold. Bloom dilution may provide a mechanistic explanation for lower CH3Hg+ accumulation by zooplankton and fish in algal-rich relative to algal-poor systems.

PubMed ID: 11904388 Exiting the NIEHS site

MeSH Terms: Animals; Biomass; Daphnia/metabolism; Eutrophication*; Food Chain*; Fresh Water; Methylmercury Compounds/metabolism*; Research Support, U.S. Gov't, P.H.S.; Water Pollutants, Chemical/metabolism*; Zooplankton/metabolism

Back
to Top