Skip Navigation

Publication Detail

Title: Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats.

Authors: Levin, E D; Addy, N; Nakajima, A; Christopher, N C; Seidler, F J; Slotkin, T A

Published In Brain Res Dev Brain Res, (2001 Sep 23)

Abstract: Chlorpyrifos (CPF) is a widely used insecticides which has been shown to alter brain cell development. The current project was conducted to determine whether there are persistent behavioral effects of early [1 mg/kg/day postnatal days (PNDs) 1-4] or late (5 mg/kg/day PNDs 11-14) postnatal CPF exposure in rats. We tested spontaneous alternation in a T-maze, locomotor activity in the Figure-8 apparatus and learning in the 16-arm radial maze, throughout adolescence and into adulthood. Exposure during either neonatal period elicited significant long-term effects on cognitive behavior. In the radial-arm maze, as has been seen previously, control male performed more accurately than control females. Early postnatal CPF exposure reversed this effect. With exposure on PNDs 1-4, females in the CPF group showed a reduction in working and reference memory errors in the radial maze, reducing their error rate to that seen in control males; in contrast, CPF-exposed males exhibited an increase in errors during the initial stages of training. When animals were exposed on PNDs 11-14 and then tested in adolescence and adulthood, males showed a significant slowing of response latency in the T-maze and the rate of habituation in the Figure-8 apparatus was slowed in both sexes. When females were challenged acutely with the muscarinic antagonist, scopolamine, they did not show reference memory impairment, whereas controls did; these results suggest that adaptations occur after CPF exposure that lead to loss of muscarinic cholinergic control of reference memory. No such changes were seen with a nicotinic cholinergic antagonist (mecamylamine). These results indicate that early neonatal exposure to CPF induces long-term changes in cognitive performance that, in keeping with the neurochemical changes seen previously, are distinctly gender-selective. Additional defects may be revealed by similar strategies that subject the animals to acute challenges, thus uncovering the adaptive mechanisms that maintain basal performance.

PubMed ID: 11557096 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top