Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Candidate gene association analysis for a quantitative trait, using parent-offspring trios.

Authors: Gauderman, W James

Published In Genet Epidemiol, (2003 Dec)

Abstract: With the increasing availability of genetic data, many studies of quantitative traits focus on hypotheses related to candidate genes, and also gene-environment (G x E) and gene-gene (G x G) interactions. In a population-based sample, estimates and tests of candidate gene effects can be biased by ethnic confounding, also known as population stratification bias. This paper demonstrates that even a modest degree of ethnic confounding can lead to unacceptably high type I error rates for tests of genetic effects. The parent-offspring trio design is reviewed, and several forms of the quantitative transmission disequilibrium test (QTDT) are summarized. A variation of the QTDT (QTDTM) is described that is based on a linear regression model with multiple intercepts, one per parental mating type. This and other models are expanded to allow testing of G x E and G x G interactions. A method for computing required sample sizes using direct computations is described. Sample size requirements for tests of genetic main effects and G x E and G x G interactions are compared across various QTDT approaches to infer their efficiencies relative to one another. The QTDTM is found to meet or exceed the efficiency of other QTDT approaches. For example, the QTDTM is approximately 3% more efficient than the QTDT of Rabinowitz ([1997] Hum. Hered. 47:342-350) for testing a genetic main effect, but can be as much as twice as efficient for testing G x E interaction, and three times more efficient for testing G x G interaction.

PubMed ID: 14639702 Exiting the NIEHS site

MeSH Terms: Algorithms; Female; Humans; Linear Models; Linkage Disequilibrium/genetics*; Male; Models, Genetic*; Nuclear Family; Prospective Studies; Quantitative Trait, Heritable*; Research Support, U.S. Gov't, P.H.S.; Retrospective Studies; Sample Size

to Top