Skip Navigation

Publication Detail

Title: Antioxidant and inflammatory response after acute nitrogen dioxide and ozone exposures in C57Bl/6 mice.

Authors: Johnston, C J; Reed, C K; Avissar, N E; Gelein, R; Finkelstein, J N

Published In Inhal Toxicol, (2000 Mar)

Abstract: Ozone (O(3)) and nitrogen dioxide (NO(2)) are highly reactive and toxic oxidant pollutants. The objective of this study is to compare chemokine, cytokine, and antioxidant changes elicited by acute exposures of O(3) and NO(2) in a genetically sensitive mouse. Eight-week-old C57Bl/6J mice were exposed to 1 or 2.5 ppm ozone or 15 or 30 ppm NO(2) for 4 or 24 h. Changes in mRNA abundance in lung were assayed by slot blot and ribonuclease protection assay (RPA). Messages encoding metallothionein (Mt), heme oxygenase I (HO-I), and inducible nitric oxide synthase (iNOS) demonstrated increased message abundance after 4 and 24 h of exposure to either O(3) or NO(2). Furthermore, increases in message abundance were of a similar magnitude for O(3) and NO(2). Messages encoding eotaxin, macrophage inflammatory protein (MIP)-1alpha, and MIP-2 were elevated after 4 and 24 h of exposure to 1 ppm ozone. Interleukin-6 was elevated after 4 h of exposure to ozone. After 4 h of 2.5 ppm ozone exposure, increased mRNAs of eotaxin, MIP-1alpha, MIP-2, Mt, HO-I, and iNOS were elevated to a higher magnitude than were detected after 1 ppm ozone. Monocyte chemoattractant protein (MCP-1) was elevated following 15 ppm NO(2) exposure. After 4 h of 30 ppm NO(2) exposure, messages encoding eotaxin, MIP-1alpha, MIP-2, and MCP-1 were elevated to levels similar to those detected after ozone exposure. Our results demonstrate a similar antioxidant and chemokine response during both O(3) and NO(2) exposure. Induction of these messages is associated with the duration and concentration of exposure. These studies suggest that these gases exert toxic action through a similar mechanism.

PubMed ID: 10715624 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top