Skip Navigation

Publication Detail

Title: Beta-sitosterol from psyllium seed husk (Plantago ovata Forsk) restores gap junctional intercellular communication in Ha-ras transfected rat liver cells.

Authors: Nakamura, Yasushi; Yoshikawa, Noriko; Hiroki, Ikumi; Sato, Kenji; Ohtsuki, Kozo; Chang, Chia-Cheng; Upham, Brad L; Trosko, James E

Published In Nutr Cancer, (2005)

Abstract: We purified compounds from the husks of psyllium seeds (Plantago ovata Forsk; desert Indian wheat), beginning with an ethanol extraction then followed by HP-20 and silica gel chromatography, which restored gap junctional intercellular communication (GJIC) in v-Ha-ras transfected rat liver epithelial WB-F344 cell line (WB-Ha-ras). GJIC was assessed by a scrape loading dye transfer assay. The active compound was identified as beta-sitosterol based on gas chromatography retention times and electron ionization mass spectroscopy (EI-MS) spectrum of authentic beta-sitosterol. Authentic beta-sitosterol restored GJIC in the tumorigenic WB-Ha-ras GJIC-deficient cells at a dose of 2.4 microM. In addition, a similar phytosterol, stigmasterol, also restored GJIC, albeit at a lower activity. beta-sitosterol and stigmasterol increased the level of connexin43 protein (Cx43) and restored phosphorylation of Cx43 to levels similar to the parental nontransfected cell line. We concluded that the restoration of intercellular communication in the GJIC-deficient, tumorigenic WB-Ha-ras cell line by the ethanol soluble fraction of psyllium seed husks is largely due to the presence of the phytosterol, beta-sitosterol. We discuss implications for dietary modulation of cancer by beta-sitosterol.

PubMed ID: 15860444 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top