Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes.

Authors: Shanker, Gouri; Syversen, Tore; Aschner, Judy L; Aschner, Michael

Published In Brain Res Mol Brain Res, (2005 Jun 13)

Abstract: Excessive free radical formation has been implicated as one of the causative factors in neurotoxic damage associated with variety of metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-dependent neurotoxicity remains far from clear, overwhelming data give credence to a mediatory role for astrocytes, a major cell type that preferentially accumulates MeHg. To extend our recent findings of MeHg-induced increase in ROS formation (G. Shanker, J.L. Aschner, T. Syversen et al., Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury, Mol. Brain Res. 128 (2004) 48-57), the present studies were designed to assess the effect of modulating intracellular glutathione (GSH) content, on ROS generation, in the absence and presence of MeHg. Intracellular GSH was reduced by treatment with 100 microM buthionine-L-sulfoxane (BSO) for 24 h, and increased by treatment with 1 mM l-2-oxothiazolidine-4-carboxylic acid (OTC) for 24 h. Additionally, the effects of the selective antioxidants, catalase (1000 U/ml for 1 h), an H2O2 scavenger, and n-propyl gallate (100 microM for 1 h), a superoxide radical (*O2-) and possibly hydroxyl radical (*OH) scavenger on MeHg-induced ROS formation were examined. After these treatments, astrocytes were exposed to +/-10 microM MeHg for 30 min, following which the fluorescent probes, CM-H2DCFA and CM-H2XRos were added; 20 min later, laser scanning confocal microscopy (LSCM) images were obtained. Exposure of astrocytes for 24 h to 100 microM BSO, a GSH synthesis inhibitor, led to a significant increase in mitochondrial ROS (i.e., *O2-, *NO, and ONOO-) formation, as assessed with CM-H2XRos mitotracker red dye. Similarly, BSO increased ROS formation in various intracellular organelles, as assessed with CM-H2DCFDA. BSO in combination with MeHg increased fluorescence levels in astrocytes to levels above those noted with BSO or MeHg alone, but this effect was statistically indistinguishable from either of these groups (BSO or MeHg). Pretreatment of astrocytes for 24 h with 1 mM OTC abolished the MeHg-induced increase in ROS. Results similar to those obtained with OTC were observed with the free radical scavenger, n-propyl gallate (n-PG). The latter had no significant effects on astrocytic fluorescence when administered alone. This *O2- and possibly *OH radical scavenger significantly attenuated MeHg-induced ROS formation. Catalase, an H2O2 scavenger, was less effective in reducing MeHg-induced ROS formation. Taken together, these studies point to the important protective effect of adequate intracellular GSH content as well as antioxidants against MeHg-triggered oxidative stress in primary astrocyte cultures.

PubMed ID: 15950756 Exiting the NIEHS site

MeSH Terms: Animals; Animals, Newborn; Antioxidants/pharmacology*; Antioxidants/therapeutic use; Astrocytes/drug effects*; Astrocytes/metabolism; Buthionine Sulfoximine/pharmacology; Cells, Cultured; Fluorescent Dyes; Free Radical Scavengers/pharmacology; Free Radical Scavengers/therapeutic use; Free Radicals/metabolism*; Glutathione/drug effects*; Glutathione/metabolism; Indicators and Reagents; Mercury Poisoning, Nervous System/metabolism; Methylmercury Compounds/antagonists & inhibitors*; Methylmercury Compounds/toxicity; Mitochondria/drug effects; Mitochondria/metabolism; Oxidation-Reduction/drug effects; Oxidative Stress/drug effects*; Oxidative Stress/physiology; Pyrrolidonecarboxylic Acid; Rats; Rats, Sprague-Dawley; Thiazoles/pharmacology; Thiazolidines

to Top