Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: 9-cis-retinoic acid: a direct-acting dysmorphogen.

Authors: Kraft, J C; Juchau, M R

Published In Biochem Pharmacol, (1993 Aug 17)

Abstract: Experiments in vitro with cultured rat conceptuses demonstrated that 9-cis-retinoic acid (9-cis-RA) (300 ng/mL amniotic fluid) produced branchial arch and somite defects similar to those elicited by equal concentrations of all-trans-retinoic acid (all-trans-RA), but with an increase in cephalic defects that included missing optic vesicles. After conceptuses were intraamniotically microinjected with 600 ng 9-cis-RA/mL amniotic fluid on day 10 of gestation, an unusual heart defect was also observed. HPLC analyses indicated that 9-cis-RA readily underwent conversion to the less active metabolite, 13-cis-retinoic acid (13-cis-RA), in cultured conceptuses during the first 4 hr after treatment but only after 6 hr could elevated levels of the potent dysmorphogen all-trans-RA be detected. In separate experiments, conversion of 13-cis-RA or of all-trans-RA to 9-cis-RA could not be detected during a 6-hr embryo culture period. Endogenous levels of 9-cis-RA in whole rat embryos also were below limits of detection but small quantities of this isomer could be detected in neonatal rat eye and human embryonic brain. Our present study strongly suggests that 9-cis-RA is a direct-acting dysmorphogen with probable specific target sites of action.

PubMed ID: 8363644 Exiting the NIEHS site

MeSH Terms: Animals; Brain/abnormalities; Branchial Region/abnormalities; Culture Techniques; Heart Defects, Congenital/chemically induced; Rats; Rats, Sprague-Dawley; Rats, Wistar; Teratogens/toxicity*; Tretinoin/toxicity*

to Top