Skip Navigation

Publication Detail

Title: Concentration-response relationships of rat lungs to exposure to oxidant air pollutants: a critical test of Haber's Law for ozone and nitrogen dioxide.

Authors: Gelzleichter, T R; Witschi, H; Last, J A

Published In Toxicol Appl Pharmacol, (1992 Jan)

Abstract: Exposure protocols were designed to ask whether lung damage in rats exposed to either ozone or nitrogen dioxide is proportional to dose rate or to cumulative dose. Thus, the response of rats to a constant product of concentration of oxidant air pollutant and time of exposure (C x T) was evaluated for 3-day exposures over a fourfold range of concentrations of ozone (0.2-0.8 ppm) or of nitrogen dioxide (3.6-14.4 ppm) for exposure durations of 6-24 hr per day. The response of rat lungs was quantified by changes in total protein content of lung lavage supernatants or by changes in content of specific cell types in lung lavage pellets. The results of these experiments clearly demonstrate that acute lung damage is a function of cumulative dose (that is, C x T product) for the three highest dose rates tested. However, when exposure duration is extended to include the entire 24-hr period (the lowest dose rate tested), there is a marked attenuation of pulmonary response. Rats were also exposed to mixtures of ozone and nitrogen dioxide with the C x T product held constant. Our results clearly demonstrate that when rats are exposed to combinations of ozone and nitrogen dioxide, lung damage is a function of peak concentration rather than a function of cumulative dose. This deviation from Haber's Law is attributed to a concentration-dependent, synergistic (greater than additive) response to this specific mixture of oxidant air pollutants.

PubMed ID: 1733050 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top