Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Martin, Marybeth
Institute Receiving Award Georgetown University
Location Washington, DC
Grant Number U01ES026132
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 30 Sep 2015 to 30 Jun 2022
DESCRIPTION (provided by applicant):  :Residents in medically underserved areas of Washington, DC have express the concern that the high incidence of cancer in their community is due to contaminants in their food and water, including metals. Results from our laboratory and others show that environmentally relevant amounts of specific metals and metalloids, referred to as metalloestrogens, activate estrogen receptor-alpha (ERα) in vitro and in vivo through a high affinity interaction with the ligand binding domain (LBD) of the receptor. These metals and metalloids fall into two separate subclasses, bivalent cations and oxyanions. New results from our laboratory suggest that metalloestrogens also activate progesterone receptor-B (PR-B). The ability to activate ERα, and potentially PR-B suggests that environmental exposure to metals and metalloids with estrogen- and progestin-like activity may increase the risk of developing breast cancer. In response to the concerns of the community, this application will address the question whether exposure to metals and metalloids increases the risk of developing breast cancer by testing the hypothesis that higher lifetime environmental exposure to metals and metalloids with estrogen- and progesterone-like activity is associated with higher mammographic density in women during the menopausal transition and delays or reduces the involution of mammary gland and the decline in mammographic breast density during this period. Aim 1 will determine whether metals and metalloids mimic the effects of estrogens and progestin on mammary gland morphology, stem and progenitor cells, and gene expression in a menopausal animal model (Aim 1a) and define the mechanisms by which metals and metalloids activate PR-B in in vitro assays (Aim 1b). Aim 2 will determine whether environmental exposure to metallohormones is associated with changes in breast density through the menopausal transition and define the mechanism by which metals and metalloids alter breast density. Specifically, Aim 2 will establish if: a, higher metallohormone levels are associated with increased mammographic density; b, higher metallohormone levels are associated with maintenance of higher breast density through the menopausal transition; and c, polymorphisms in the calcium pathway are associated with increased mammographic breast density indicating the mechanism through which bivalent cationic metallohormones increase risk. To accomplish these aims, we will continue to engage with our partners to get their input, to help collect data, and to translate and communicate the scientific findings to the community.
Science Code(s)/Area of Science(s) Primary: 27 - Breast Cancer Centers
Publications See publications associated with this Grant.
Program Officer Abee Boyles
to Top