Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Electronic Health Record Based Algorithm to Identify Patients with Autism Spectrum Disorder.

Authors: Lingren, Todd; Chen, Pei; Bochenek, Joseph; Doshi-Velez, Finale; Manning-Courtney, Patty; Bickel, Julie; Wildenger Welchons, Leah; Reinhold, Judy; Bing, Nicole; Ni, Yizhao; Barbaresi, William; Mentch, Frank; Basford, Melissa; Denny, Joshua; Vazquez, Lyam; Perry, Cassandra; Namjou, Bahram; Qiu, Haijun; Connolly, John; Abrams, Debra; Holm, Ingrid A; Cobb, Beth A; Lingren, Nataline; Solti, Imre; Hakonarson, Hakon; Kohane, Isaac S; Harley, John; Savova, Guergana

Published In PLoS One, (2016)

Abstract: Cohort selection is challenging for large-scale electronic health record (EHR) analyses, as International Classification of Diseases 9th edition (ICD-9) diagnostic codes are notoriously unreliable disease predictors. Our objective was to develop, evaluate, and validate an automated algorithm for determining an Autism Spectrum Disorder (ASD) patient cohort from EHR. We demonstrate its utility via the largest investigation to date of the co-occurrence patterns of medical comorbidities in ASD.We extracted ICD-9 codes and concepts derived from the clinical notes. A gold standard patient set was labeled by clinicians at Boston Children's Hospital (BCH) (N = 150) and Cincinnati Children's Hospital and Medical Center (CCHMC) (N = 152). Two algorithms were created: (1) rule-based implementing the ASD criteria from Diagnostic and Statistical Manual of Mental Diseases 4th edition, (2) predictive classifier. The positive predictive values (PPV) achieved by these algorithms were compared to an ICD-9 code baseline. We clustered the patients based on grouped ICD-9 codes and evaluated subgroups.The rule-based algorithm produced the best PPV: (a) BCH: 0.885 vs. 0.273 (baseline); (b) CCHMC: 0.840 vs. 0.645 (baseline); (c) combined: 0.864 vs. 0.460 (baseline). A validation at Children's Hospital of Philadelphia yielded 0.848 (PPV). Clustering analyses of comorbidities on the three-site large cohort (N = 20,658 ASD patients) identified psychiatric, developmental, and seizure disorder clusters.In a large cross-institutional cohort, co-occurrence patterns of comorbidities in ASDs provide further hypothetical evidence for distinct courses in ASD. The proposed automated algorithms for cohort selection open avenues for other large-scale EHR studies and individualized treatment of ASD.

PubMed ID: 27472449 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top