Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas.

Authors: Knijnenburg, Theo A; Wang, Linghua; Zimmermann, Michael T; Chambwe, Nyasha; Gao, Galen F; Cherniack, Andrew D; Fan, Huihui; Shen, Hui; Way, Gregory P; Greene, Casey S; Liu, Yuexin; Akbani, Rehan; Feng, Bin; Donehower, Lawrence A; Miller, Chase; Shen, Yang; Karimi, Mostafa; Chen, Haoran; Kim, Pora; Jia, Peilin; Shinbrot, Eve; Zhang, Shaojun; Liu, Jianfang; Hu, Hai; Bailey, Matthew H; Yau, Christina; Wolf, Denise; Zhao, Zhongming; Weinstein, John N; Li, Lei; Ding, Li; Mills, Gordon B; Laird, Peter W; Wheeler, David A; Shmulevich, Ilya; Cancer Genome Atlas Research Network; Monnat Jr, Raymond J; Xiao, Yonghong; Wang, Chen

Published In Cell Rep, (2018 04 03)

Abstract: DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy.

PubMed ID: 29617664 Exiting the NIEHS site

MeSH Terms: Cell Line, Tumor; DNA Damage; Gene Silencing; Genome, Human*; Humans; Loss of Heterozygosity; Machine Learning; Mutation; Neoplasms/classification; Neoplasms/genetics*; Recombinational DNA Repair*; Tumor Suppressor Proteins/genetics; Tumor Suppressor Proteins/metabolism

to Top