Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas.

Authors: Way, Gregory P; Sanchez-Vega, Francisco; La, Konnor; Armenia, Joshua; Chatila, Walid K; Luna, Augustin; Sander, Chris; Cherniack, Andrew D; Mina, Marco; Ciriello, Giovanni; Schultz, Nikolaus; Cancer Genome Atlas Research Network; Sanchez, Yolanda; Greene, Casey S

Published In Cell Rep, (2018 04 03)

Abstract: Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders" may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.

PubMed ID: 29617658 Exiting the NIEHS site

MeSH Terms: Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Genome, Human; Humans; Machine Learning*; Neoplasms/genetics*; Neoplasms/metabolism; Signal Transduction; ras Proteins/genetics*; ras Proteins/metabolism

to Top